

Janus-MM Basic CAN Driver

For Linux 2.6.xx and Windows XP

User Manual
Revision A

Revision Date Comments

A 06/16/2011 Initial Version

 Copyright 2011
 FOR TECHNICAL SUPPORT Diamond Systems Corporation
 PLEASE CONTACT: 555 Ellis Street
 Mountain View, CA 94043 USA
 support@diamondsystems.com Tel 1-650-810-2500
 Fax 1-650-810-2525
 www.diamondsystems.com

mailto:support@diamondsystems.com
http://www.diamondsystems.com/

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 2 2

Table of Contents

1 Introduction 3

2 Scope 3

3 Setting up the hardware 4

3.1 Hardware Jumper settings 4
3.1.1 The CAN Termination, Slew Rate and Power Supply Selection 4

3.2 The CAN IRQ Selection 5
3.2.1 The CAN Base Address Selection 5

3.3 Loop Back Cable Setup 6

3.4 CAN Analyzer Setup (For Debugging) 6

4 Linux 2.6.xx Driver - Functions Exported 7

4.1 open() 8

4.2 close() 9

4.3 IOCTL – Write CAN Frame 10

4.4 IOCTL – Read CAN Frames 11

4.5 IOCTL – Set CAN Baud Rate 12

5 Linux Driver Installation and Running the application 13

5.1 Compiling and loading the driver 13

5.2 Compiling and running the Application 13

5.3 Stopping the application and unloading 15

5.4 Linux Driver Application examples 16

6 Windows XP Driver - Functions exported 17

6.1 OpenDevice () 18

6.2 CloseHandle () 19

6.3 IOCTL – Write CAN Frame 20

6.4 IOCTL – Read CAN Frames 21

6.5 IOCTL – Set CAN Baud Rate 22

6.6 IOCTL – Configure CAN base address 23

7 Windows Driver Installation and Running the application 24

7.1 Driver Installation 24

7.2 Driver Un-Installation 26

7.3 Driver Sample Application Usage 26

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 3 3

1 Introduction

This document provides complete instructions on using the device drivers for exercising the CAN bus on
the Janus-MM CAN ports. The Janus-MM board has two CAN ports which are CAN 2.0 compatible using
the SJA1000 CAN bus controllers.

In order to communicate with the CAN controllers, Diamond Systems provides a set of freely usable basic
device drivers on Linux 2.6.xx and Windows XP operating systems so that the board can be quickly
evaluated and a user can develop applications with the driver on the OS of choice.

This document is meant for…
1. Application developers who want to use the CAN driver can use this document to understand the driver
calls and use in their application.
2. Test engineers who want to test the driver and application can use this document to set up the
hardware test environment, connect a snooper, install driver and run the application.

2 Scope

The device driver distributed has the following specifications.

 Available on Linux kernel version 2.6.23 and Windows XP OS.

 Low level driver that can perform open, close, read, write on the device.

 Ability to change the baud rate of the CAN communication up to 1Mbps baud rate.

 Handle interrupt request on both the IRQs for each CAN port on the board.

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 4 4

3 Setting up the hardware

3.1 Hardware Jumper settings

The jumper settings have to be made according to the configuration as mentioned in the Janus-MM user
manual. It is required that the hardware base address and the IRQ settings used for the operation is
available in the SBC that is being used to run the Janus-MM board. When using Athena-II SBC, please
restore the Athena-II BIOS to default settings.

The Sample jumper settings are described in the sections below when Janus-MM is used with Athena-II
SBC.

3.1.1 The CAN Termination, Slew Rate and Power Supply Selection

Jumpers J10 and J11 provide CAN termination, slew rate and power supply selection for both CAN ports;
J10 is used to configure CAN port A and J11 is used to configure CAN port B.

The following diagram shows the jumper pin layout and the recommended jumper setting.

J10 and J11 Jumpers with Default settings

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 5 5

3.2 The CAN IRQ Selection

Use jumper J5 to specify the IRQ for both CAN ports. The following diagram shows the jumper pin layout.
The IRQ jumper setting on the board must match the software settings in the driver configuration or
command line arguments when running the applications as described in the later sections of this
document.

J5 Jumpers with Default Settings (IRQ 5 for CAN A and IRQ7 for CAN B)

3.2.1 The CAN Base Address Selection

Use pin sets CN0-CN7 of jumper J4 to set the CAN base address using Memory address spaces. The
diagram below shows the jumper setting for Memory address 0xD7000 for CANA. The port CANB
automatically is offset by 0x200 so the address for CANB would be 0xD7200. Please refer to the Janus-
MM user manual for more information on the jumper settings and board configuration.

J4 Jumper setting for using memory address of 0xD7000

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 6 6

3.3 Loop Back Cable Setup

The CAN H and CAN L lines should be connected as below for stand-along testing on a Janus-MM CANA
and CANB ports. In this configuration, the data sent on one port will be received by the other port to verify
the connectivity as well as the operation of the driver.

3.4 CAN Analyzer Setup (For Debugging)

To debug the connectivity, a CAN analyzer can be used to tap into the CAN connections of the Janus MM
CAN ports. There are two CAN ports, CANA and CANB, available in the JANUSMM board. These ports
are looped-back for testing. The CAN analyzer tapping the CAN packet is also shown in the picture
below. Using this connectivity, the CAN traffic going between the two ports can be monitored on the CAN
analyzer.

NOTE: This is provided as a suggestion and Diamond Systems does not recommend any specific CAN
tools. It is up to you to use any available CAN hardware which are CAN 2.0 compatible.

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 7 7

4 Linux 2.6.xx Driver - Functions Exported

This section discusses all the functions exported by the Linux driver, their prototypes, their usage
and an example segment of code. The Linux driver is supported on kernel version 2.6.xx and it is
recommended to use the kernel version 2.6.23.

The following table provides a list of functions exported by the Linux driver.

Function Name Description

open () This function is used to open the CAN device and get the handle for that
device. The handle returned by this function MUST be used in all sub-
sequent calls in the application.

close () This function is used to release the device and to remove the handle
returned by the call to OpenDevice function.

IOCTL For all other functions, the driver provides a set of IOCTL commands to
perform various functions on the driver like read from CAN bus, write to CAN
bus, configure memory address and set baud rate. All the various IOCTL
commands should be executed via the “ioctl” function which is prototyped in
“sys/ioctl.h”.

IOCTL CODE Operation

SJA1000_IOCTRANS Transmit ioctl request code. This IOCTL code
should be used for transmitting data on the
CAN bus.

SJA1000_IOCRECV Receive ioctl request code. This IOCTL
should be used for reading data from the CAN
bus.

SJA1000_IOCBTR Baud-rate ioctl request code. This IOCTL
should be used to set the baud rate of the
CAN bus port.

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 8 8

4.1 open()

DESCRIPTION This function is used to open the CAN device and get the handle
for that device.

PROTOTYPE int open(char *Devicename, int flag)

RETURN VALUE Returns nonnegative value on successful execution and it will act

as handler to access the device. Negative value means failure to
open the device.

PARAMETERS
 Devicename

The device name to open the device. This file name
should be any of the following
dev/CANA, /dev/CANB

flag
 O_RDWR
appDevHandle
 This parameter is the handle for the device.

REMARKS This function should be called before calling any other driver
functions. This function will give the handle for
the CAN device.

EXAMPLE
 #include "can.h"

#include "sja1000_ioctl.h"
………
int appDevHandle;
char appDeviceName[15] = /dev/CANA;

appDevHandle = open(appDeviceName , O_RDWR);

 if(appDevHandle < 0) {
printf("Device Open Error");

 exit(0);
 }
 ………

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 9 9

4.2 close()

DESCRIPTION This function is used to release the device and to remove the
handle.

PROTOTYPE int close(int appDevHandle);

RETURN VALUE Returns nonnegative value on successful execution.

PARAMETERS
 appDevHandle
 This parameter is the handle for the device.

REMARKS This should be the last function call in the application.

EXAMPLE
 #include "can.h"

#include "sja1000_ioctl.h"
………
int appDevHandle;

appRetVal = close(appDevHandle);
if(appRetVal == 0) {
 printf("Device Closed\n");
}

 ………

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 10 10

4.3 IOCTL – Write CAN Frame

DESCRIPTION This function is used to transmit the CAN frames to the
hardware.

PROTOTYPE

#include <sys/ioctl.h>
int ioctl(int appDevHandle, int request, unsigned long *in_frame);

RETURN VALUE On success zero is returned. On error, -1 is returned, and errno
is set appropriately.

PARAMETERS

appDevHandle
 This parameter is the handle for the device.
request

A long word integer that specifies the Transmit ioctl
request code (SJA1000_IOCTRANS)

in_frame
The CAN Frame that has to be transmitted.

EXAMPLE

 #include "can.h"
#include "sja1000_ioctl.h"
………
int appDevHandle;
struct can_frame frame;
………

// Data is Transmitted as can frames

appWRetVal = ioctl(appDevHandle, SJA1000_IOCTRANS,
(unsigned long)&frame);
………

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 11 11

4.4 IOCTL – Read CAN Frames

DESCRIPTION This function is used by the driver to receive the CAN frames
from the hardware when data is available.

PROTOTYPE

#include <sys/ioctl.h>
int ioctl(int appDevHandle, int request, unsigned long
*out_frame);

RETURN VALUE Return count of the data received. On error, -1 is returned, and
errno is set appropriately.

PARAMETERS

appDevHandle
 This parameter is the handle for the device.
request

A long word integer that specifies the Receive ioctl
request code (SJA1000_IOCRECV)

out_frame
The received CAN Frame.

EXAMPLE
 #include "can.h"

#include "sja1000_ioctl.h"
………
int appDevHandle;
unsigned long data[10];
………

// Data is received as unsigned long type // array which can be
packed back as CAN frame

appWRetVal = ioctl(appDevHandle, SJA1000_IOCRECV,
(unsigned long) data);
………

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 12 12

4.5 IOCTL – Set CAN Baud Rate

DESCRIPTION This function is used to set the bitrate for the specified device.

PROTOTYPE

#include <sys/ioctl.h>
int ioctl(int appDevHandle, int request, unsigned long *in_btr);

RETURN VALUE On success zero is returned. On error, -1 is returned, and
errno is set appropriately.

PARAMETERS

appDevHandle
 This parameter is the handle for the device.
request

A long word integer that specifies the Bit-timing ioctl
request code (SJA1000_IOCBTR)

in_btr
Bitrate for the specified CAN device.

EXAMPLE
 #include "can.h"

#include "sja1000_ioctl.h"
………
int appDevHandle;
struct can_btr btr;
………

// Bitrate value ranges upto 1000000

appWRetVal = ioctl(appDevHandle, SJA1000_IOCBTR,
(unsigned long)&btr);
………

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 13 13

5 Linux Driver Installation and Running the application

This section discusses how to install the driver and run the application.

Untar can_beta0.2.tar.bz2 with the following command,

tar xfvj can_beta0.2.tar.bz2

5.1 Compiling and loading the driver

From the release directory issue change directory to enter into the driver folder and issue make

command,

cd driver

make

Run install.sh to load the kernel,

./install.sh

Current install.sh is a shell script that uses the following configuration,

canA : Address = 0xD7000 and IRQ = 5

canB : Address = 0xD7200 and IRQ = 7

This can be edited to use different address and IRQ number for both CAN devices.

5.2 Compiling and running the Application

From the release directory issue change directory to enter into the application folder,

cd application

Issue the following command. This will create three binaries for transmitting, receiving and setting

bitrate.

./compile.sh

Run the following command for setting bitrate.

./bitrate –h

Usage: ./bitrate [options] [<CAN-Device-Name>]

 Options:

 -b <bitrate> : bit-rate in bits/sec

 -s <samp_pt> : sample-point in one-tenth of a percent

 or 0 for CIA recommended sample points

 -c <clock> : real CAN system clock in Hz

 -h : help

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 14 14

Ex 1: configure bitrate for both canA and canB

./bitrate –b 1000000

Ex 2: configure biterate for any one device

./bitrate –b 500000 canA

Open two new terminals, and run canrecv and cansend from different terminals.

Canrecv has to be run first. It will wait for data.

./canrecv canB

Cansend has to be run next, the command is as shown below.

./cansend canA

The help menu for canrecv and cansend is shown below:

a. cansend

./cansend –help

Usage: cansend [<can-interface>] [Options] <can-msg>

 <can-msg> can consist of up to 8 bytes given as a space separated list

 Options:

 -i, --identifier=ID CAN Identifier (default = 1)

 -r --rtr send remote request

 -e --extended send extended frame

 -l send message infinite times

 --loop=COUNT send message COUNT times

-p --pattern send message data in incremental pattern

-o <filename> Input filename

 -v, --version be verbose

 -h, --help this help

Ex 1: Transmit CAN frames

./cansend canA 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 –l --pattern

Ex 2: Transmit a file continuously

./cansend canA –o Transmit.txt

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 15 15

b. canrecv

./canrecv –help

Usage: canrecv [<can-interface>] [Options]

 Options:

 -o <filename> Output filename

 -h, --help this help

EX 1: Receive CAN Frames

./canrecv canB

EX 2: Receive Files and store the file in incremental order (1recv.txt, recv.txt, 3recv.txt,…….,)

./canrecv canB –o recv.txt

Note: For 10 minutes the application can send 37 files each of size 1024 bytes.

5.3 Stopping the application and unloading

The application can be stopped by pressing Ctrl+C.

The driver is unloaded using the following command.

./uninstall.sh

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 16 16

5.4 Linux Driver Application examples

Example 1:

The delivery package can be tested to transmit data patterns as follows,

a) Open a command shell and type the following.

./canrecv canB > rx.txt

The application will be waiting for data from „cansend‟ application.

b) Open another command shell and type the following. The „cansend‟ application will start sending

the data.

./cansend canA 0x1 0x2 0x3 0x4 0x5 0x6 0x7 > tx.txt

c) Leave the applications running for few hours. First stop the „cansend‟ application by pressing Ctrl-

C. Then stop „canrecv‟.

d) Now you have the log files generated at both the ends. And they can be compared using the linux

command „diff‟ as follows,

diff tx.txt rx.txt

Example 2:

The delivery package can be tested to transmit file as follows,

a) Open a command shell and type the following.

./canrecv canB -o rx.txt

The application will be waiting for file from „cansend‟ application.

b) Open another command shell and type one of the following command. The „cansend‟ application

will start sending the file.

./cansend canA –o tx.txt –-loop=0x5 //will send the file for 5 times

./cansend canA –o tx.txt –l //will send the file continuously

./cansend canA –o tx.txt //will send the file once

c) Leave the applications running for few hours. First stop the „cansend‟ application by pressing Ctrl-

C. Then stop „canrecv‟.

d) Now you have the multiple instances of the transmitted file generated by the receiving node as

1rx.txt, 2rx.txt, 3rx.txt and so on. And they can be compared using the Linux command „diff‟.

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 17 17

6 Windows XP Driver - Functions exported

This section discusses all the functions exported by the Windows driver, their prototypes, their
usage and an example segment of code.

The following table lists the functions supported by the driver.

Function Name Description

OpenDevice () This function is used to open the CAN device and get the handle for that
device. The handle returned by this function MUST be used in all sub-
sequent calls in the application.

CloseHandle () This function is used to release the device and to remove the handle
returned by the call to OpenDevice function.

IOCTL For all other functions, the driver provides a set of IOCTL commands to
perform various functions on the driver like read from CAN bus, write to CAN
bus, configure memory address and set baud rate. All the various IOCTL
commands should be executed via the DeviceIoControl function.

IOCTL CODE Operation

IOCTL_WRITE This macro specifies the Transmit ioctl
request code. This IOCTL code should be
used for transmitting data on the CAN bus.

IOCTL_READ This macro specifies the Receive ioctl request
code. This IOCTL should be used for reading
data from the CAN bus.

IOCTL_SET_BAUD_RATE This macro specifies the Baud-rate ioctl
request code. This IOCTL should be used to
set the baud rate of the CAN bus port.

IOCTL_SET_MEM This macro specifies the memory base
address configuration request code. The value
passed when setting the base address should
match the base address jumper configuration
in the hardware.

The section below provides a list of functions exported by the Windows driver.

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 18 18

6.1 OpenDevice ()

DESCRIPTION This function is used to open the CAN device and get the handle
for that device.

PROTOTYPE OpenDevice(IN CONST GUID * InterfaceGuid,

 IN ULONG FileFlagOptions)

RETURN VALUE Returns Handle value.

PARAMETERS
 InterfaceGuid

The device interface GUID to be opens the port. This
GUID name should be unique and declared in public.h
file

FileFlagOptions
This parameter should be set to
FILE_FLAG_OVERLAPPED.

REMARKS This function should be called before calling any other driver

functions. This function will give the handle for
the CAN device.

EXAMPLE
 #include “public.h"

………
HANDLE hISAdevice;

hISAdevice = OpenDevice(

&GUID_DEVINTERFACE_CAN,
 FILE_FLAG_OVERLAPPED);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 19 19

6.2 CloseHandle ()

DESCRIPTION This function is used to release the device and to remove the
handle.

PROTOTYPE CloseHandle(hISAdevice);

RETURN VALUE If the function succeeds, the return value is nonzero.

PARAMETERS
 DevHandle

This parameter is the handle for the device obtained
from a previous call to OpenDevice function.

REMARKS This should be the last function call in the application.

EXAMPLE
 #include “public.h"

………
HANDLE hISAdevice;

hISAdevice = CloseHandle(hISAdevice);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 20 20

6.3 IOCTL – Write CAN Frame

DESCRIPTION This function is used to transmit the CAN frames to the hardware.
PROTOTYPE

#include <winioctl.h>

okay = DeviceIoControl(hISAdevice,
 IOCTL_WRITE, outbuf, outsize,

inbuf, insize, &numread, lpOverlapped);

 RETURN VALUE If the operation completes successfully, the return
 Value is non zero.

 PARAMETERS
hISAdevice
 This parameter is the handle for the device.
IOCTL_WRITE

This macro specifies the Transmit ioctl request code
 Outbuf

The CAN Frame that has to be transmitted.

Ex: outbuf[0] =FrameFormat
 outbuf[1] =Identifier
 outbuf[n]= data.

 Outsize
 The size of data to be transmitted.
 Inbuf
 Not needed.
 Insize
 Not needed.

lpBytesReturned
 Actual data size. (not needed.)
 lpOverlapped
 This should be always Null.

 EXAMPLE
 #include "public.h"

………
 HANDLE hISAdevice;

………
okay = DeviceIoControl(hISAdevice,
 IOCTL_WRITE, outbuf,
 outcount,inbuf,insize,

&numread,NULL);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 21 21

6.4 IOCTL – Read CAN Frames

DESCRIPTION This function is used to receive the CAN frames from the hardware.
PROTOTYPE

#include <winioctl.h>

okay = DeviceIoControl(hISAdevice,
 IOCTL_READ, outbuf, outsize,

inbuf, insize, &numread, lpOverlapped);

 RETURN VALUE If the operation completes successfully, the return
 Value is non zero.

 PARAMETERS
hISAdevice
 This parameter is the handle for the device.
IOCTL_READ

This macro specifies the Receive ioctl request code
 Outbuf
 Not needed
 Outsize
 Not needed.
 Inbuf

The structure contains the frame datas in the following
format,

Fi -> frame format
iVer->identifier
rData-> CAN Receive data.

 Insize
 Size of inbuf.
 lpBytesReturned
 Actual data size.
 lpOverlapped
 This should be always Null.

 EXAMPLE

 #include "public.h"
………
HANDLE hISAdevice;
………
okay = DeviceIoControl(hISAdevice,

 IOCTL_READ, NULL,
 0,inbuf,insize,

&numread,NULL);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 22 22

6.5 IOCTL – Set CAN Baud Rate

DESCRIPTION This function is used to transmit the baud rate value to the driver
PROTOTYPE

#include <winioctl.h>

okay = DeviceIoControl(hISAdevice,
 IOCTL_SET_BAUD_RATE, outbuf, outsize,inbuf,
insize,
 &numread, lpOverlapped);

 RETURN VALUE If the operation completes successfully, the return

 Value is non zero.

 PARAMETERS
hISAdevice
 This parameter is the handle for the device.
IOCTL_SET_BAUD_RATE

This macro specifies the Baud-rate ioctl request code
 Outbuf
 Bit rate value.
 Outsize
 The size of bit rate value.
 Inbuf
 Not needed.
 Insize
 Not needed.

lpBytesReturned
 Actual data size. (not needed.)
 lpOverlapped
 This should be always Null.

EXAMPLE
 #include "public.h"

………
HANDLE hISAdevice;
………
okay = DeviceIoControl(hISAdevice,

 IOCTL_SET_BAUD_RATE, outbuf,
 outcount,inbuf,insize,

&numread,NULL);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 23 23

6.6 IOCTL – Configure CAN base address

DESCRIPTION This function is used to configure address of the CAN driver

PROTOTYPE

#include <winioctl.h>

okay = DeviceIoControl(hISAdevice,
 IOCTL_SET_MEM, outbuf, outsize,

inbuf, insize, &numread, lpOverlapped);

 RETURN VALUE If the operation completes successfully, the return
 Value is non zero.

 PARAMETERS
hISAdevice
 This parameter is the handle for the device.
IOCTL_SET_MEM

This macro specifies the memory address configuration
request code

 Outbuf
 Memory address value.
 Outsize
 The size of memory address variable.
 Inbuf
 Not needed.
 Insize
 Not needed.

lpBytesReturned
 Actual data size. (not needed.)
 lpOverlapped
 This should be always Null.

 EXAMPLE
 #include "public.h"

………
HANDLE hISAdevice;
………
okay = DeviceIoControl(hISAdevice,

 IOCTL_SET_MEM, outbuf,
 outcount,inbuf,insize,

&numread,NULL);

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 24 24

7 Windows Driver Installation and Running the application

This section discusses how to install the driver on Windows XP OS and run the sample application(s)
called “canSend” and “canRecv”.

The Windows driver is available in binary format and is distributed as the following files.

Filename Description

SJA1000_CAN.INF INF File for usage when the device is detected by windows

SJA1000_CAN.SYS The CAN driver (installs in C:\Windows\System32\Drivers folder)

INSTALL.BAT Driver installation batch file.

REMOVE.BAT Driver un-installation batch file.

DEVCON.EXE Alternative to Device Manager. Used by INSTALL.BAT and
REMOVE.BAT

WDFCOINSTALLER01009.DLL Support DLL required along with the INF file.

NOTE: The driver is supported on Windows XP OS only and will not work with Windows 7.

7.1 Driver Installation

a. Double-click the “install.bat” file to install the driver.
b. Check for the driver entries (canSend & canRecv) in “Control Panel ->

system-> Hardware -> Device Manager -> Sample Device”.
c. To configure the IRQ value, change the “IRQConfig” value in .inf file for both

controllers as follows,

[S5933DK1_LogConfig]
IRQConfig=5

[S5933DK2_LogConfig]
IRQConfig=7

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 25 25

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 26 26

7.2 Driver Un-Installation

d. Double-click the “remove.bat” file to un-install the driver.
e. Check for the driver removal (canSend & canRecv) in “Control Panel ->

system -> Hardware -> Device Manager -> Sample Device”.

7.3 Driver Sample Application Usage

1) Steps for CAN frame transmission and reception

1. Open two command windows
2. Run “canSend.exe” in the first command window for transmission.
3. Run “canRecv.exe” in the second command window for reception.

NOTE: The same steps can be followed Vice-versa to make “canSend.exe” as
master and “canRecv.exe” as slave.

Command description for canSend:

 "Usage: canSend.exe [<can-interface>] [Options] <can-msg>"

 "<can-msg> can consist of up to 8 bytes given as a space separated list"

 "Options:"

 " -i [ex: -i ID] CAN Identifier (default = 1)"

 " -e send extended frame"

 " -l [ex : -l COUNT] send message COUNT times"

 " -p send message data in incremental pattern"

 " -b [ex : -b br_value] baud-rate (default = 1000000)"

 " -a [ex : -a address] address (default = 0xD7000) "

 " -o <filename>" "Input filename"

 " -h, --help this help"

Example for Data Transmission (TX) on device CANA:

Pattern : canSend.exe canA –b 1000000 –a d7200 –p –i 2 1 2 3 4 5 6 7 8
File : canSend.exe canA –b 1000000 –a d7200 –p –i 2 –o input.txt

Janus-MM CAN Driver User Manual www.diamondsystems.com Page 27 27

Command description for canRecv:

"Usage: canRecv.exe [<can-interface>] [Options] <can-msg>"
 "Options:"

" -b [ex : -b br_value] baud-rate (default = 1000000) "

" -a [ex : -a address] address (default = 0xD7200)"

" -o <filename>" "output filename”

" -h, --help this help"

Example of data reception (RX) on device CANB:

Pattern : canRecv.exe canB –b 1000000 –a d7000
File : canRecv.exe canB –b 1000000 –a d7000 –o output.txt

2) Logging the data transferred

Example:

TX:

canSend.exe canA –b 1000000 –a d7200 –p –i 2 1 2 3 4 5 6 7 8 > tx.txt

RX:

 canRecv.exe canB –b 1000000 –a d7000 > rx.txt

Both the log files can be compared using any file comparing utility.

3) Compiling the Application

a. Install WDK (Windows Driver Kit) in development PC.

b. Go to “Programs->Windows Driver Kits -> WDK7600

 ->Build Environments ->Windows XP

 -> x86 Free Build Environment

c. Go to Application source code directory.

d. Build the program into an EXE using the BLD command.

